POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Engineering Thesis Workshop [S1FT2>PrDInż]

dr hab. Mirosław Szybowicz pro miroslaw.szybowicz@put.pozna			
Coordinators		Lecturers	
Number of credit points 8,00			
Tutorials 0	Projects/seminars 0	5	
Number of hours Lecture 0	Laboratory classe 30		Other (e.g. online) 0
Form of study full-time		Requirements compulsory	
Level of study first-cycle		Course offered in Polish	
Area of study (specialization)		Profile of study general academic	
Field of study Technical Physics		Year/Semester 4/7	
Course			

Prerequisites

Knowledge of experimental physics and basic specialized knowledge in the area of functional materials thermodynamics. Ability to solve physical problems on the basis of acquired knowledge, ability to gather information from specified sources. Understanding of the need to constantly expand one's competencies.

Course objective

To deepen theoretical and practical knowledge in the area of the selected thesis topic and to solve relevant engineering problems within the scope of the thesis work. The main goal is for the student(s) to independently (or in teams) implement complex program content outlined in the dedicated diploma thesis card for the given student(s).

Course-related learning outcomes

Knowledge:

Teaching students to use acquired knowledge and skills to solve technical and scientific problems, to perform measurements, and to interpret obtained results along with evaluating their uncertainty (measurements errors)

Developing skills in using literature sources and citing them

Developing skills in creating professional research reports

Skills:

As a result of the course, the student should be able to:

Design and build accessories for measurement systems, perform tests, and measure quantities that are characterizing functional materials

Independently perform preliminary analysis of measurement results based on literature and draw conclusions

Independently prepare a written thesis and efficiently present an oral presentation in Polish with a description of the measurement system and well-documented and interpreted measurement results

Social competences:

As a result of the course, the student will gain the following competencies: Ability to work independently on the assigned task, showing responsibility in this work Responsibility for the accuracy of the obtained results

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

evaluation of the student's activity during laboratory work evaluation of the skills and knowledge necessary to complete the work evaluation of the student's consistency in work

Programme content

none

Course topics

Principles of preparing diploma theses. Guidelines for preparing presentations in PowerPoint or similar software. Current state of technology worldwide. Additional content depending on the topic of the engineering thesis.

Teaching methods

Solving engineering problems using appropriate devices, engineering and programing instrumentation and software; analyzing and discussing the results of one's work in relation to current literature.

Bibliography

Basic:

Individually selected, according to the topic of the thesis and performed research tasks.

Additional:

Individually selected, according to the topic of the thesis and performed research tasks.

Breakdown of average student's workload

	Hours	ECTS
Total workload	595	8,00
Classes requiring direct contact with the teacher	75	5,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	260	2,50